

Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati, Nashik-422003 (Affiliated to SPPU, Pune, Reaccredited with 'A' grade, Recipient of Best College Award by SPPU)

Programme Specific Outcomes,

&

Course Outcomes of M.Sc

Department of Mathematics

Academic Year

2021-22

Programme Specific Outcomes: M.Sc. Subject (Programme code)

Name of the Programme: M.Sc. Subject		
Program Specific Outcomes		
At the end of the programme, student will be able to		
1	Student can develop basic programmes in Python and Data Science	
2	Student can teach mathematics at school, UG and PG level	
3	Student were able to study mathematical research topics	
4	Students were able to apply mathematics in industry	
5	Students were able to study basics of coding	
6	Student can learn mathematical methods to solve basic problems occurring in nature	

Course Outcomes: M.Sc. Subject (Programme code)

Class : M. Sc. Subject			
Semester – I			
Paper	Course code & course title	At the end of the course, student will be able to	
		CO1: Define vectors, concept of basis and dimension.	
		C02: Discuss Concept of Linear maps and matrices.	
MTUT		CO3: Analyze Basic concepts of Invariant subspaces.	
111	Linear Algebra	C04: Estimate the structure of orthogonal transformation.	
		C05: Describing principle axes theorem.	
		C06: Create orthogonal and Orthonormal transformation and transformations into matrices	
		CO1: Define properties of sets	
		CO2: Describe Concept of various functions and simple functions	
MTUT		CO3: Solve the problems of Continuous and measurable functions	
112	Real Analysis	CO4 : Discuss about the Fundamental Theorem of Calculus and its applications	
		CO5: Describe functions of Bounded variations & its applications	
		CO6: Analyze the problems of differentiability & integrability	
		CO1: Define basic definitions and properties of Groups	
		CO2: Distinguish Between Center and Centralizer of Groups	
MTUT	Group Theory	CO3: Apply fundamental theorem of homomorphism on groups	
113		CO4: Differentiate between Normal and Factor Group and between Internal Direct Products and External Direct product	
		CO5 : State Sylow theorems, Lagrange's Theorems, Cayley's Theorems with its applications	
		CO6: Compose different groups using Group actions	
		CO1 : Define the concepts of differentiation for multivariable	
		CO2 : Discuss Extreme value problems and its applications	
MTUT		C03 : Solve Problems based on multiple integrals	
114	Advanced Calculus	C04 : Apply Green's theorems and its applications	
		C05: Effective implementation of Divergence Theorem and Stoke's Theorem	
		C06: Use the concept of calculus and find Area and Volume.	

	Ordinary Differential Equations	C01: Define linear equations with 1st and 2nd order
		C02: Discuss the concept of Wronskian and its applications
MTUT		C03 : Use to appropriate method to solve initial value problem.
115		C04: Find Regular singular points and point at infinity
		C05: Simplify Lipchitz's condition and its applications
		C06: Use to calculate the movement or flow of electricity.
	I	Semester – II
	Complex Analysis	C01 : Discuss Path connectivity and Fundamental Theorem of Algebra.
		C02: Define Review of calculus of multi variables.
MTUT		CO3 : Analyze Analyticity of complex Differentiation functions and its applications
121		C04: Estimate Winding numbers and its applications.
		C05 : Explain Local mapping, Homotopy and simple connectivity.
		C06: Used in analogue electronic design.
	General Topology	C01 : Describe meaning of topology
		C02: Explain Connectedness and Compactness property of Arbitrary spaces
MIUI		C03: Analyze the difference between two arbitrary spaces
122		C04: Study properties of continuity between arbitrary spaces
		CO5: Examine the homeomorphic properties of topological spaces
		CO6: Apply topological properties to real life and arbitrary objects
	Ring Theory	CO1: Define Basic Definitions and properties of Rings
		CO2 : Describes the properties of ideals and its applications towards rings
MTUT		CO3: Explain Field of fractions with its applications towards PID and UFD
123		CO4: Discuss about the Eisenstein's criterion and its applications towards irreducibility of polynomials
		CO5: Describing characteristic of ring
		CO6: Describe application of Ring theory towards Field Theory
MTUT	Advanced Numerical Analysis	CO1: Know the importance of Numerical ,Basic concepts in Matrix and Linear Algebra
124		CO2: Identify and interpret the fundamental the concepts of polynomial and roots of equation.

		C03: Apply to knowledge and skills in numerical methods to solve algebraic and transcendental equations.
		C04: Use the concept of eigen value problem techniques for mathematical problem arising in various field.
		C05: Applications to Electrical Circuit problems, ODE, PDE.
		C06: Explain Error analysis and its applications.
		C01: Define concepts of PDE.
	Partial Differential Equations	C02: Discuss Various methods for Nonlinear 1st order PDE.
MTUT		C03: Explain Canonical Forms and classification of 2nd order
125		C04: Solve Boundary Value Problems
		C05: Apply D' Alembert's solution and applications.
		C06: Simplify the wave equations, heat equations e

Class : M. Sc. Subject -II		
Semester – III		
Paper	Course code & course title	At the end of the course, student will be able to
	Functional Analysis	CO1: Define Basic theory of Functionals
		CO2: Explain the definition and concepts in Hilbert Space
		CO3: Discuss applications of Linear Operators
MTUT 131		CO4: Analyze and apply concepts in Banach Space
		CO5: Solve example of Inner product spaces
		C06: Use to systematically investigating relationships between problem behaviour and environmental events
	Field Theory	CO1: Define Basic Definitions of Field Extensions
		CO2: Describe Eisenstein Criterion, Adjunction of roots, Compass and Ruler construction
MTUT 122		CO3: Discuss the Fundamental Theorems of Algebra
WITOT 132		CO4: Solve the problems of Ruler and Compass Construction
		CO5: Illustrate the problems of polynomial solvable by radicals & symmetric function
		CO6: Apply of Galois Theory to classical problem
	Introduction to Data Science	CO1: Basic Definitions of Data Science in a big Data World
		CO2: Describes the steps of Data Science Process
MTUT		CO3: Demonstrate Machine Learning & Types of Machine Learning
133		CO4: Discuss about the General Techniques and programming Tips for handling & dealing the large volume of data.
		CO5: Describing Text mining Techniques and data visualization option
		CO6: Real life <u>apply</u> of Data Science.
		CO1: Can define equaton of Motion
		CO2: Can differentiate between momentums and solve the problems
MTUTO	Mechanics	CO3: Can solve Homogeneous quadratic functions of velocity
135		CO4: Can solve the problems on variational and Hamiltonian principles
		CO5: Can explain Two body problem for central force motion
		CO6: Can give some real life applications

	Integral Equations	C01: Describing the nature of Fourier series
MTUTO 137		C02: Explain Fourier method
		C03 :Solve Sturm Liouville problems and find its applications
		C04: Apply the method of fourier series to find eigen value and eigen function.
		C05 : Discuss Legendre polynomials and applications
		C06: To simplyfy complex data by decomposite it into the series of trignometric or exponential function.
		Semester-IV
	Fourier Series and Boundary Value Problem	C01:Describing the nature of Fourier series
		C02: Explain Fourier method
		C03:Solve Sturm Liouville problems and find its applications
MTUT 141		C04: Apply the method of fourier series to find eigen value and eigen function.
		C05 : Discuss Legendre polynomials and applications
		C06: To simplyfy complex data by decomposite it into the series of trignometric or exponential function.
		C01: Define the concepts of Graphs and level sets .
		C02: Discuss Surfaces and its orientation.
MTUT	Differential	C03: Explain the Curvature and arc length of curve.
142	Geometry	C04: Describe Curvature of surfaces.
		C05: Analyze local equivalence and its applications.
		C06 : Used to analyze and describe geologic structure.
		C01: Define the concepts Python and install Python on various OS .
		C02: Discuss Conditional statement and its applications
MTUT	Python	C03:Explain the necessity of loops in Python
143	Programming	C04: Describe Strings and class in Python
		C05: Analyze Object oriented programme
		C06 : Apply Python programming to solve basic problems

		C01: Discuss Divisibility in integers .
	Number	C02: Explain Congruences and its applications.
MIUTO		C03: Solve Diophantine Equations and its example.
144		C04: Describe Algebraic Number Fields.
		C05: Investigate the historical background of Fermat's Theorem
		C06: Examine Unique Factorization Property.
		CO1: Basic Definitions like corrections & decoding, maximum
		likelihood decoding, hamming distance, vector space over finite field, etc.
		CO2: Describes the distance of code linear codes, hamming weight & its
		theorem BCH code etc.
		CO3: Explain Bases of linear codes, communication channels, cossets
		nearest neighbor decoding for linear code etc.
MTUTO	Coding Theory	CO4: Solve the main coding theory problem, hamming, problems on
MIUIO		hamming distance, etc.
147		CO5 : Discuss about the equivalence linear code, encoding & decoding
		with linear codes, generator & parity check matrix etc.
		CO6: Analyzes the different types of bounds in coding like as Sphere
		covering bound, Gilbert Varshamov bound, Singleton bound & MDS
		code etc. and also they can apply coding theory in a linear algebra, ring
		theory & field theory etc.